

Walterstown 110 kV Substation

PECR Appendix 12.1 - Photomontages

December 2025

macroworks

LVIA PHOTOMONTAGES

Walterstown 110kV Substation

This book contains imagery for the
viewpoints chosen for the LVIA study

October 2025

VIEWPOINT INDEX

Introduction

There is no industry-standard definition of what constitutes a 'verified photomontage', and it has been applied in two different ways, namely in terms of image size/scaling, and the accuracy of the camera location. Both are essentially concerned with the ability to audit the accuracy of the visual material.

The Landscape Institute Technical Guidance Note 06/19 – Visual representation of development proposals (TGN 06/19) states that:

"Visualisations should provide the viewer with a fair representation of what would be likely to be seen if the proposed development is implemented and should portray the proposal in scale with its surroundings. In the context of landscape/townscape and visual impact assessment, it is crucial that visualisations are objective and sufficiently accurate for the task in hand. In short, visualisation should be fit for purpose."

Macro Works has produced the Verified View Montages (VVM) included in this document in accordance with TGN 06/19, guidance which is broadly consistent with Scottish Natural Heritage (now NatureScot) 'Visual Representation of Wind Farms' 2017. This guidance advocates a proportionate approach and appropriate levels of accuracy to the production of visual material.

In the context that the visual material is to accompany a planning application, Macro Works has followed a highly accurate and verifiable process to accurately communicate the scale, appearance, context, form, and extent of development, and ensure that the visual material is accurate, objective, and unbiased. The VVM are considered consistent with Type 4 in the guidance.

The photography was captured during good weather conditions with high levels of visibility. Photography has been taken to a very high standard in accordance with the guidance, and locational information is captured with a high degree of accuracy with regard to location and elevation.

The locations of the visualisations have been identified through the Landscape/Townscape and Visual Impact Assessment (LVIA or TVIA) process, and produced from 3D model information received from project architects/engineers.

This methodology has been prepared by Macro Works to explain the production of the VVM, ensuring the process is transparent and auditable.

Each VVM is subject to a thorough review and approval process which includes discussions with project engineers and architects to ensure it accurately reflects the architectural proposals.

For each viewpoint location, a 90° Horizontal Field of View (HFOV) cylindrical baseline photograph is provided to allow a 96% enlargement contextual reference. Image enlargement of 150% is recommended in the guidance (where feasible) to allow for binocular image scaling when printed, which results in an image with a 53.5° HFOV. Where this is not feasible because of proximity or infrastructure occupying a wide field of view well beyond 53.5° that would necessitate splitting the view across multiple images, 90° HFOV cylindrical images are presented to avoid confusion for the viewer. A bounding box illustrates the extent of a 53.5° image where this is the case.

This document contains a site location map with VVM locations plotted, and all reference information, including photography, modelling, topographic, post-production, formatting, viewpoint and viewing instructions.

Photography and GPS/GNSS Data

At the agreed locations, high-quality photography is captured in RAW format using either a Canon 5D Mark II or Canon 6D Mark II Full Frame Sensor camera. A Manfrotto tripod and panoramic head and leveller are used to ensure the photography is taken level and at consistent angles to ensure consistent overlapping.

Viewpoint locations are captured by inhouse trained personnel using a survey-grade GNSS unit and made compatible with the GIS referenced drawings of the proposed development. Where deemed necessary, the camera location is paint-marked and photographed and subsequently surveyed by a qualified topographical surveyor. In these circumstances, surveyors are given the photograph locations, together with marked-up photography that shows elements in the view (parapet heights, kerbing, lamp posts, etc.) that are to be surveyed as control points for model alignment within the panorama.

TGN 06/19 advocates the use of a 50mm prime lens as the industry standard, and this is the default approach adopted. In urban contexts, where a 50mm lens cannot fully capture the proposed development, the guidance accepts the use of alternative fixed-length prime lenses (Appendix 11, P.28). This approach is adopted dependent on the proximity of the development.

Following the site visit, RAW images are processed via Adobe Lightroom and panoramas are stitched and generated using the recommended industry standard software, PTGui Pro.

Post-production, the rendered image is taken into Adobe Photoshop where it is 'masked' into the existing captured panorama. This essentially involves ensuring that anything in the foreground of the proposals is brought in front of the rendered image.

Adjustments are made as required to ensure that the lighting, reflections, and material characteristics of each render are accurate to the time and date of the photography and that the images meet GDPR standards (via blurring faces and car registrations, etc.).

Proposed mitigation is added where indicated via a Landscape Mitigation Plan.

For each viewpoint location, a 90° Horizontal Field of View (HFOV) cylindrical baseline photograph is provided to allow a 96% enlargement contextual reference. Image enlargement of 150% is recommended in the guidance (where feasible) to allow for binocular image scaling when printed, which results in an image with a 53.5° HFOV. Where this is not feasible because of proximity or infrastructure occupying a wide field of view well beyond 53.5° that would necessitate splitting the view across multiple images, 90° HFOV cylindrical images are presented to avoid confusion for the viewer. A bounding box illustrates the extent of a 53.5° image where this is the case.

This document contains a site location map with VVM locations plotted, and all reference information, including photography, modelling, topographic, post-production, formatting, viewpoint and viewing instructions.

3D Modelling and VVM Creation

The proposed development is accurately modelled into a 3D environment in GIS mapping software and 3DS Max 2023 using a combination of data sources (REVIT files, AutoCAD drawings, DTM/DEM data etc.) received from the project architects and engineers.

Virtual 3D cameras are positioned according to the survey coordinates, and the focal lengths is set to match the captured photography.

For rural projects, the visualisation preparation methodology recommended in the Scottish Natural Heritage 2017 'Visual Representation of Wind Farms' is strictly followed. This involves the creation of 360° wirelines using GIS software, which perfectly match the generated panorama as and 3DS Max refers to each viewpoint. This allows for the development to be accurately placed within the captured photography.

For urban projects, camera matching or photographic alignment is method by which a combination of data is used to produce an accurate camera match for each view. Virtual 3D cameras are positioned and the captured photography is then placed into the background of the 3DS Max Viewpoint. The surveyed information is then matched to the existing buildings in the photography.

Where appropriate, colour palettes and material references provided by the wider design team are applied to the model to provide a real-world representation. To ensure a high degree of accuracy, render of the development are generated from 3DS Max 2023 with identical image characteristics to that of the baseline photography, including reference to the date and time of capture.

Image Presentation

The objective of Type 4 visualisation is to present a printed image which gives a realistic impression of scale and detail.

VVMs are presented in accordance with the TGN 06/19 guidance, and final views are formatted into a booklet using Adobe InDesign, with all accompanying information relating to the photography, modelling, topography, post-production and viewpoints included.

90° Baseline View

Please Note: The proposed development is not visible from this viewpoint

Walterstown 110kV Substation - Landscape and Visual Impact Assessment

Viewpoint Ref: VP1 St. Peter's GAA Dunboyne

Visualisation Type 4 - This 90° cylindrical projection panorama has been captured, prepared and presented in accordance with the guidance set out in the Landscape Institute Technical Guidance Note 06/19 for Type 4 Visualisations and the Scottish Natural Heritage 2017 guidance 'Visual Representation of Wind Farms'. This image has been presented in a 90° cylindrical format to aid visual comprehension of linear infrastructure occupying a wide FoV, which avoids splitting the view across numerous multiple images.

Easting (ITM): 701470
Northing (ITM): 741188
Principal Distance: 522 mm
Direction of View: 212 °
Distance to Site: 2.1 km
Paper size: 841 x 297 mm
Correct printed image size: 820 x 251 mm
Panoramic Head: Manfrotto Pano Head/Leveller
Elevation: 72.73 m
Enlargement Factor: 96%

Horizontal Field of View: 90° (cylindrical projection)
Date and Time: 24/03/1900 10:26:00
Camera: Canon 5D Mark II Digital SLR
Lens: Canon Fixed 50mm Full Frame Sensor
Panoramic Head: Manfrotto Pano Head/Leveller
Camera Height: 1.7m (AGL)

Photography Software: Adobe Lightroom
Panorama Stitching Software: PTGui Pro
Post-Production Software: Adobe Photoshop
Formatting Software: Adobe Illustrator/InDesign

Modeling Software: 3DS Max 2023
Rendering Software: Mental Ray/Corona
GIS Unit: Trimble Catalyst (GNSS)
Topographical Data: LiDAR/Terrain Data
GPS Ref: Georeferenced/Surveyed DWG

90° Outline View
indicating physical position and scale of the
proposed development irrespective of screening

Walterstown 110kV Substation - Landscape and Visual Impact Assessment

Viewpoint Ref: VP1 St. Peter's GAA Dunboyne

Visualisation Type 4 - This 90° cylindrical projection panorama has been captured, prepared and presented in accordance with the guidance set out in the Landscape Institute Technical Guidance Note 06/19 for Type 4 Visualisations and the Scottish Natural Heritage 2017 guidance 'Visual Representation of Wind Farms'. This image has been presented in a 90° cylindrical format to aid visual comprehension of linear infrastructure occupying a wide FoV, which avoids splitting the view across numerous multiple images.

Easting (ITM): 701470
Northing (ITM): 741188
Principal Distance: 522 mm
Direction of View: 212 °
Paper size: 841 x 297 mm
Distance to Site: 2.1 km
Correct printed image size: 820 x 251 mm
Elevation: 72.73 m
Enlargement Factor: 96%

Horizontal Field of View: 90° (cylindrical projection)
Date and Time: 2025:09:17 10:26
Camera: Canon 5D Mark II Digital SLR
Lens: Canon Fixed 50mm Full Frame Sensor
Panoramic Head: Manfrotto Pano Head/Leveller
Camera Height: 1.7m (AGL)

Photography Software: Adobe Lightroom
Panorama Stitching Software: PTGui Pro
Post-Production Software: Adobe Photoshop
Formatting Software: Adobe Illustrator/InDesign

Modeling Software: 3DS Max 2023
Rendering Software: Mental Ray/Corona
GIS Unit: Trimble Catalyst (GNSS)
Topographical Data: LiDAR/Terrain Data
GPS Ref: Georeferenced/Surveyed DW/GS

90° Baseline View

Please Note: The proposed development is not visible from this viewpoint

Walterstown 110kV Substation - Landscape and Visual Impact Assessment

Viewpoint Ref: VP2 L2219 at Commons Upper

Visualisation Type 4 - This 90° cylindrical projection panorama has been captured, prepared and presented in accordance with the guidance set out in the Landscape Institute Technical Guidance Note 06/19 for Type 4 Visualisations and the Scottish Natural Heritage 2017 guidance 'Visual Representation of Wind Farms'. This image has been presented in a 90° cylindrical format to aid visual comprehension of linear infrastructure occupying a wide FoV, which avoids splitting the view across numerous multiple images.

Easting (ITM):

699919

Horizontal Field of View: 90° (cylindrical projection)

Northing (ITM):

739807

Principal Distance: 522 mm

Direction of View:

145°

Paper size: 841 x 297 mm

Distance to Site:

0.4 km

Correct printed image size: 820 x 251 mm

Elevation:

77.65 m

Enlargement Factor: 96%

Date and Time:

24/03/1900 10:54:00

Camera:

Canon 5D Mark II Digital SLR

Lens:

Canon Fixed 50mm Full Frame Sensor

Panoramic Head:

Manfrotto Pano Head/Leveller

Camera Height:

1.7m (AGL)

Photography Software:

Adobe Lightroom

Panorama Stitching Software:

PTGui Pro

Post-Production Software:

Adobe Photoshop

Formatting Software:

Adobe Illustrator/InDesign

Modeling Software:

3DS Max 2013

Rendering Software:

Mental Ray/Corona

GIS Unit:

Trimble Catalyst (GNSS)

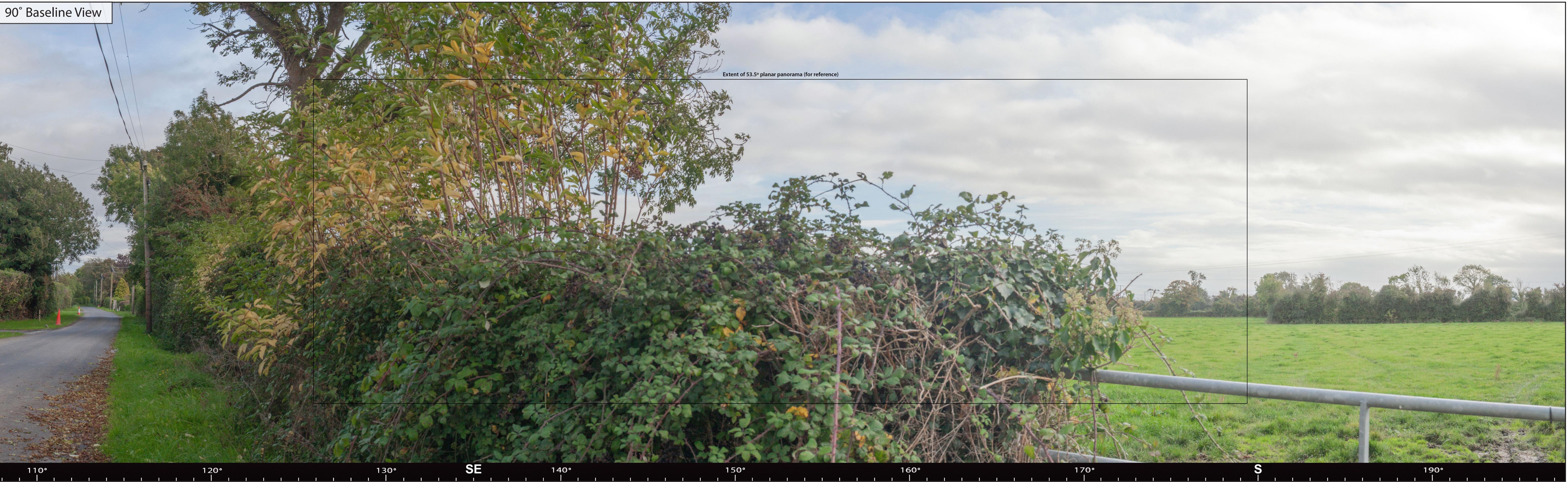
Topographical Data:

LiDAR/Terrain Data

GPS Ref:

Georeferenced/Surveyed DWG

90° Outline View
indicating physical position and scale of the
proposed development irrespective of screening


Walterstown 110kV Substation - Landscape and Visual Impact Assessment

Viewpoint Ref: VP2 L2219 at Commons Upper

Visualisation Type 4 - This 90° cylindrical projection panorama has been captured, prepared and presented in accordance with the guidance set out in the Landscape Institute Technical Guidance Note 06/19 for Type 4 Visualisations and the Scottish Natural Heritage 2017 guidance 'Visual Representation of Wind Farms'. This image has been presented in a 90° cylindrical format to aid visual comprehension of linear infrastructure occupying a wide FoV, which avoids splitting the view across numerous multiple images.

Easting (ITM): 699919
Northing (ITM): 739807
Horizontal Field of View: 90° (cylindrical projection)
Principal Distance: 522 mm
Direction of View: 145 °
Paper size: 841 x 297 mm
Distance to Site: 0.4 km
Correct printed image size: 820 x 251 mm
Elevation: 77.65 m
Enlargement Factor: 96%
Date and Time: 2025:09:17 10:54
Camera: Canon 5D Mark II Digital SLR
Lens: Canon Fixed 50mm Full Frame Sensor
Panoramic Head: Manfrotto Pano Head/Leveller
Camera Height: 1.7m (AGL)
Photography Software: Adobe Lightroom
Panorama Stitching Software: PTGui Pro
Post-Production Software: Adobe Photoshop
Formatting Software: Adobe Illustrator/InDesign
Modeling Software: 3DS Max 2023
Rendering Software: Mental Ray/Corona
GNSS Unit: Trimble Catalyst (GNSS)
Topographical Data: LiDAR/Terrain Data
GPS Ref: Georeferenced/Surveyed DWG

90° Baseline View

Walterstown 110kV Substation - Landscape and Visual Impact Assessment

Viewpoint Ref: VP3a L2220 at Walterstown

Visualisation Type 4 - This 90° cylindrical projection panorama has been captured, prepared and presented in accordance with the guidance set out in the Landscape Institute Technical Guidance Note 06/19 for Type 4 Visualisations and the Scottish Natural Heritage 2017 guidance 'Visual Representation of Wind Farms'. This image has been presented in a 90° cylindrical format to aid visual comprehension of linear infrastructure occupying a wide FoV, which avoids splitting the view across numerous multiple images.

Easting (ITM):

700318

Northing (ITM):

739384

Horizontal Field of View: 90° (cylindrical projection)

522 mm

Principal Distance:

841 x 297 mm

Direction of View:

153 °

Paper size:

820 x 251 mm

Distance to Site:

0 km

Correct printed image size:

96%

Elevation:

70.89 m

Enlargement Factor:

1.7m (AGL)

Date and Time:

24/03/1900 15:20:00

Photography Software:

Adobe Lightroom

Camera:

PTGui Pro

Panorama Stitching Software:

Canon 5D Mark II Digital SLR

Post-Production Software:

PTGui Pro

Panoramic Head:

Adobe Photoshop

Manfrotto Pano Head/Leveller

Formatting Software:

Adobe Illustrator/InDesign

Georeferencing Software:

3D Max 2019

Rendering Software:

Metal Ray/Corona

GNSS Unit:

Trimble Catalyst (GNSS)

Topographic Data:

iLiDAR/3D Terrain Data

GPS Ref:

Georeferenced/Surveyed DWG/S

3D Max 2019

Metal Ray/Corona

Rendering Software:

Trimble Catalyst (GNSS)

GNSS Unit:

iLiDAR/3D Terrain Data

Topographic Data:

Georeferenced/Surveyed DWG/S

3D Max 2019

Metal Ray/Corona

Rendering Software:

Trimble Catalyst (GNSS)

GNSS Unit:

iLiDAR/3D Terrain Data

Topographic Data:

Georeferenced/Surveyed DWG/S

GPS Ref:

Georeferenced/Surveyed DWG/S

3D Max 2019

Metal Ray/Corona

Rendering Software:

Trimble Catalyst (GNSS)

GNSS Unit:

iLiDAR/3D Terrain Data

Topographic Data:

Georeferenced/Surveyed DWG/S

GPS Ref:

Georeferenced/Surveyed DWG/S

3D Max 2019

Metal Ray/Corona

Rendering Software:

Trimble Catalyst (GNSS)

GNSS Unit:

iLiDAR/3D Terrain Data

Topographic Data:

Georeferenced/Surveyed DWG/S

GPS Ref:

Georeferenced/Surveyed DWG/S

3D Max 2019

Metal Ray/Corona

Rendering Software:

Trimble Catalyst (GNSS)

GNSS Unit:

iLiDAR/3D Terrain Data

Topographic Data:

Georeferenced/Surveyed DWG/S

GPS Ref:

Georeferenced/Surveyed DWG/S

3D Max 2019

Metal Ray/Corona

Rendering Software:

Trimble Catalyst (GNSS)

GNSS Unit:

iLiDAR/3D Terrain Data

Topographic Data:

Georeferenced/Surveyed DWG/S

GPS Ref:

Georeferenced/Surveyed DWG/S

3D Max 2019

Metal Ray/Corona

Rendering Software:

Trimble Catalyst (GNSS)

GNSS Unit:

iLiDAR/3D Terrain Data

Topographic Data:

Georeferenced/Surveyed DWG/S

GPS Ref:

Georeferenced/Surveyed DWG/S

3D Max 2019

Metal Ray/Corona

Rendering Software:

Trimble Catalyst (GNSS)

GNSS Unit:

iLiDAR/3D Terrain Data

Topographic Data:

Georeferenced/Surveyed DWG/S

GPS Ref:

Georeferenced/Surveyed DWG/S

3D Max 2019

Metal Ray/Corona

Rendering Software:

Trimble Catalyst (GNSS)

GNSS Unit:

iLiDAR/3D Terrain Data

Topographic Data:

Georeferenced/Surveyed DWG/S

GPS Ref:

Georeferenced/Surveyed DWG/S

3D Max 2019

Metal Ray/Corona

Rendering Software:

Trimble Catalyst (GNSS)

GNSS Unit:

iLiDAR/3D Terrain Data

Topographic Data:

Georeferenced/Surveyed DWG/S

GPS Ref:

Georeferenced/Surveyed DWG/S

3D Max 2019

Metal Ray/Corona

Rendering Software:

Trimble Catalyst (GNSS)

GNSS Unit:

iLiDAR/3D Terrain Data

Topographic Data:

Georeferenced/Surveyed DWG/S

GPS Ref:

Georeferenced/Surveyed DWG/S

3D Max 2019

Metal Ray/Corona

Rendering Software:

Trimble Catalyst (GNSS)

GNSS Unit:

iLiDAR/3D Terrain Data

Topographic Data:

Georeferenced/Surveyed DWG/S

GPS Ref:

Georeferenced/Surveyed DWG/S

3D Max 2019

Metal Ray/Corona

Rendering Software:

Trimble Catalyst (GNSS)

GNSS Unit:

iLiDAR/3D Terrain Data

Topographic Data:

Georeferenced/Surveyed DWG/S

GPS Ref:

Georeferenced/Surveyed DWG/S

3D Max 2019

Metal Ray/Corona

Rendering Software:

Trimble Catalyst (GNSS)

GNSS Unit:

iLiDAR/3D Terrain Data

Topographic Data:

Georeferenced/Surveyed DWG/S

GPS Ref:

Georeferenced/Surveyed DWG/S

3D Max 2019

Metal Ray/Corona

Rendering Software:

Trimble Catalyst (GNSS)

GNSS Unit:

iLiDAR/3D Terrain Data

90° Outline View
indicating physical position and scale of the
proposed development irrespective of screening

Walterstown 110kV Substation - Landscape and Visual Impact Assessment

Viewpoint Ref: VP3a L2220 at Walterstown

Visualisation Type 4 - This 90° cylindrical projection panorama has been captured, prepared and presented in accordance with the guidance set out in the Landscape Institute Technical Guidance Note 06/19 for Type 4 Visualisations and the Scottish Natural Heritage 2017 guidance 'Visual Representation of Wind Farms'. This image has been presented in a 90° cylindrical format to aid visual comprehension of linear infrastructure occupying a wide FoV, which avoids splitting the view across numerous multiple images.

Easting (ITM):	700318	Horizontal Field of View: 90° (cylindrical projection)	Date and Time:	2025:10:01 15:20	Photography Software:	Adobe Lightroom	Modeling Software:	3DS Max 2023
Northing (ITM):	739384	Principal Distance: 522 mm	Camera:	Canon 5D Mark II Digital SLR	Panorama Stitching Software:	PTGui Pro	Rendering Software:	MeleRay/Corona
Direction of View:	153 °	Paper size: 841 x 297 mm	Lens:	Canon Fixed 50mm Full Frame Sensor	Post-Production Software:	Adobe Photoshop	GNIS Unit:	Trimble Catalyst (GNSS)
Distance to Site:	0 km	Correct printed image size: 820 x 251 mm	Panoramic Head:	Manfrotto Pano Head/Leveller	Formatting Software:	Adobe Illustrator/InDesign	Toolegraphical Data:	iLDA/TS/TerrainData
Elevation:	70.89 m	Enlargement Factor: 96%	Camera Height:	1.7m (AGL)	GPS Ref:	Georeferenced/Surveyed DW/GS	3D Model:	Georeferenced DW/GS

90° Photomontage

Walterstown 110kV Substation - Landscape and Visual Impact Assessment

Viewpoint Ref: VP3a L2220 at Walterstown

Visualisation Type 4 - This 90° cylindrical projection panorama has been captured, prepared and presented in accordance with the guidance set out in the Landscape Institute Technical Guidance Note 06/19 for Type 4 Visualisations and the Scottish Natural Heritage 2017 guidance 'Visual Representation of Wind Farms'. This image has been presented in a 90° cylindrical format to aid visual comprehension of linear infrastructure occupying a wide FoV, which avoids splitting the view across numerous multiple images.

E

Easting (ITM): 700318 Horizontal Field of View: 90° (cylindrical projection)
Northing (ITM): 739384 Principal Distance: 522 mm
Direction of View: 153° Paper size: 841 x 297 mm
Distance to Site: 0 km Correct printed image size: 820 x 251 mm
Elevation: 70.89 m Enlargement Factor: 96%

Date and Time: 2025:10:01 15:20
Camera: Canon 5D Mark II Digital SLR
Lens: Canon Fixed 50mm Full Frame Sensor
Panoramic Head: Manfrotto Pano Head/Leveller
Camera Height: 1.7m (AGL)

Photography Software: Adobe Lightroom
Panorama Stitching Software: PTGui Pro
Post-Production Software: Adobe Photoshop
Formatting Software: Adobe Illustrator/InDesign

Modeling Software: 3DS Max 2023
Rendering Software: Mental Ray/Corona
GNSS Unit: Trimble Catalyst (GNSS)
Topographical Data: LiDAR/Terrain Data
GPS Ref: Georeferenced/Surveyed DWG/GIS

N

macrowork AEROPRO GROUP

90° Photomontage
Established Mitigation

Walterstown 110kV Substation - Landscape and Visual Impact Assessment

Viewpoint Ref: VP3a L2220 at Walterstown

Visualisation Type 4 - This 90° cylindrical projection panorama has been captured, prepared and presented in accordance with the guidance set out in the Landscape Institute Technical Guidance Note 06/19 for Type 4 Visualisations and the Scottish Natural Heritage 2017 guidance 'Visual Representation of Wind Farms'. This image has been presented in a 90° cylindrical format to aid visual comprehension of linear infrastructure occupying a wide FoV, which avoids splitting the view across numerous multiple images.

110°

120°

130°

SE

140°

150°

160°

S

170°

180°

190°

Easting (ITM): 700318
Northing (ITM): 739384
Principal Distance: 522 mm
Direction of View: 153 °
Paper size: 841 x 297 mm
Distance to Site: 0 km
Correct printed image size: 820 x 251 mm
Panoramic Head: Manfrotto Pano Head/Leveller
Elevation: 70.89 m
Enlargement Factor: 96%

Date and Time: 2025:10:01 15:20
Camera: Canon 5D Mark II Digital SLR
Lens: Canon Fixed 50mm Full Frame Sensor
Panoramic Head: Manfrotto Pano Head/Leveller
Camera Height: 1.7m (AGL)

Photography Software: Adobe Lightroom
Panorama Stitching Software: PTGui Pro
Post-Production Software: Adobe Photoshop
Formatting Software: Adobe Illustrator/InDesign

Modeling Software: 3DS Max 2023
Rendering Software: Mental Ray/Corona
GNSS Unit: Trimble Catalyst (GNSS)
Topographical Data: LiDAR/Terrain Data
GPS Ref: Georeferenced/Surveyed DW/GIS

90° Baseline View

Walterstown 110kV Substation - Landscape and Visual Impact Assessment

Viewpoint Ref: VP3b L2220 at Walterstown

Visualisation Type 4 - This 90° cylindrical projection panorama has been captured, prepared and presented in accordance with the guidance set out in the Landscape Institute Technical Guidance Note 06/19 for Type 4 Visualisations and the Scottish Natural Heritage 2017 guidance 'Visual Representation of Wind Farms'. This image has been presented in a 90° cylindrical format to aid visual comprehension of linear infrastructure occupying a wide FoV, which avoids splitting the view across numerous multiple images.

Easting (ITM): 700318
Northing (ITM): 739384
Direction of View: 219°
Distance to Site: 0 km
Elevation: 70.89 m

Horizontal Field of View: 90° (cylindrical projection)
Principal Distance: 522 mm
Paper size: 841 x 297 mm
Correct printed image size: 820 x 251 mm
Enlargement Factor: 96%

Date and Time: 24/03/1900 15:20:00
Camera: Canon 5D Mark II Digital SLR
Lens: Canon Fixed 50mm Full Frame Sensor
Panoramic Head: Manfrotto Pano Head/Leveller
Camera Height: 1.7m (AGL)

Photography Software: Adobe Lightroom
Panorama Stitching Software: PTGui Pro
Post-Production Software: Adobe Photoshop
Formatting Software: Adobe Illustrator/InDesign

Modeling Software: 3DS Max 2013
Rendering Software: Mental Ray/Corona
GNSS Unit: Trimble Catalyst (GNSS)
Topographical Data: LiDAR/Terrain Data
GPS Ref: Georeferenced Survey DWG/S

90° Outline View
indicating physical position and scale of the
proposed development irrespective of screening

Walterstown 110kV Substation - Landscape and Visual Impact Assessment

Viewpoint Ref: VP3b L2220 at Walterstown

Visualisation Type 4 - This 90° cylindrical projection panorama has been captured, prepared and presented in accordance with the guidance set out in the Landscape Institute Technical Guidance Note 06/19 for Type 4 Visualisations and the Scottish Natural Heritage 2017 guidance 'Visual Representation of Wind Farms'. This image has been presented in a 90° cylindrical format to aid visual comprehension of linear infrastructure occupying a wide FoV, which avoids splitting the view across numerous multiple images.

Easting (ITM): 700318
Northing (ITM): 739384
Principal Distance: 522 mm
Direction of View: 219 °
Paper size: 841 x 297 mm
Distance to Site: 0 km
Correct printed image size: 820 x 251 mm
Elevation: 70.89 m
Enlargement Factor: 96%

Horizontal Field of View: 90° (cylindrical projection)
Date and Time: 2025:10:02 15:20
Camera: Canon 5D Mark II Digital SLR
Lens: Canon Fixed 50mm Full Frame Sensor
Panoramic Head: Manfrotto Pano Head/Leveller
Camera Height: 1.7m (AGL)

Photography Software: Adobe Lightroom
Panorama Stitching Software: PTGui Pro
Post-Production Software: Adobe Photoshop
Formatting Software: Adobe Illustrator/InDesign

Modeling Software: 3DS Max 2023
Rendering Software: Mental Ray/Corona
GIS Unit: Trimble Catalyst (GNSS)
Topographical Data: LiDAR/Terrain Data
GPS Ref: Georeferenced/Surveyed DW/GS

90° Photomontage

Walterstown 110kV Substation - Landscape and Visual Impact Assessment

Viewpoint Ref: VP3b L2220 at Walterstown

Visualisation Type 4 - This 90° cylindrical projection panorama has been captured, prepared and presented in accordance with the guidance set out in the Landscape Institute Technical Guidance Note 06/19 for Type 4 Visualisations and the Scottish Natural Heritage 2017 guidance 'Visual Representation of Wind Farms'. This image has been presented in a 90° cylindrical format to aid visual comprehension of linear infrastructure occupying a wide FoV, which avoids splitting the view across numerous multiple images.

S

190°

200°

210°

SW

240°

250°

260°

Easting (ITM):

700318

Northing (ITM):

739384

Horizontal Field of View: 90° (cylindrical projection)

522 mm

Principal Distance:

841 x 297 mm

Direction of View:

219 °

Paper size:

820 x 251 mm

Distance to Site:

0 km

Correct printed image size:

96%

Elevation:

70.89 m

Enlargement Factor:

1.7m (AGL)

Date and Time:

2025:10:02 15:20

Photography Software:

Adobe Lightroom

Panorama Stitching Software:

PTGui Pro

Post-Production Software:

Adobe Photoshop

Panoramic Head:

Manfrotto Pano Head/Leveller

Formatting Software:

Adobe Illustrator/InDesign

Georeferencing Software:

3D Max 2023

Rendering Software:

Metal Ray/Corona

GNSS Unit:

Trimble Catalyst (GNSS)

Topographical Data:

iLiDAR/Terrain Data

GPS Ref:

Georeferenced/Surveyed DW/GS

3D

Max

02

Metal

Ray/Corona

Trimble

Catalyst

(GNSS)

iLiDAR

Terrain

Data

Georeferenced

Surveyed

DW/GS

Group

macro

work

macro

work

Group

90° Photomontage
Established Mitigation

Walterstown 110kV Substation - Landscape and Visual Impact Assessment

Viewpoint Ref: VP3b L2220 at Walterstown

Visualisation Type 4 - This 90° cylindrical projection panorama has been captured, prepared and presented in accordance with the guidance set out in the Landscape Institute Technical Guidance Note 06/19 for Type 4 Visualisations and the Scottish Natural Heritage 2017 guidance 'Visual Representation of Wind Farms'. This image has been presented in a 90° cylindrical format to aid visual comprehension of linear infrastructure occupying a wide FoV, which avoids splitting the view across numerous multiple images.

Easting (ITM):

700318

Northing (ITM):

739384

Horizontal Field of View: 90° (cylindrical projection)

522 mm

Principal Distance:

841 x 297 mm

Direction of View:

219 °

Paper size:

820 x 251 mm

Distance to Site:

0 km

Correct printed image size:

96%

Elevation:

70.89 m

Date and Time:

2025:10:02 15:20

Photography Software:

Adobe Lightroom

Camera:

Canon 5D Mark II Digital SLR

Panorama Stitching Software:

PTGui Pro

Lens:

Canon Fixed 50mm Full Frame Sensor

Post-Production Software:

Adobe Photoshop

Panoramic Head:

Manfrotto Pano Head/Leveller

Formatting Software:

Adobe Illustrator/InDesign

Georeferencing Software:

3D Max 2023

Rendering Software:

Mental Ray/Corona

GNSS Unit:

Trimble Catalyst (GNSS)

Topographical Data:

iLiDAR/TerrainData

GPS Ref:

Georeferenced/Surveyed DW/GS

S

190°

200°

210°

220°

230°

240°

250°

260°

SW

3D Max 2023

Mental Ray/Corona

Trimble Catalyst (GNSS)

iLiDAR/TerrainData

Georeferenced/Surveyed DW/GS

3D Max 2023

Mental Ray/Corona

Trimble Catalyst (GNSS)

iLiDAR/TerrainData

Georeferenced/Surveyed DW/GS

3D Max 2023

Mental Ray/Corona

Trimble Catalyst (GNSS)

iLiDAR/TerrainData

Georeferenced/Surveyed DW/GS

3D Max 2023

Mental Ray/Corona

Trimble Catalyst (GNSS)

iLiDAR/TerrainData

Georeferenced/Surveyed DW/GS

3D Max 2023

Mental Ray/Corona

Trimble Catalyst (GNSS)

iLiDAR/TerrainData

Georeferenced/Surveyed DW/GS

3D Max 2023

Mental Ray/Corona

Trimble Catalyst (GNSS)

iLiDAR/TerrainData

Georeferenced/Surveyed DW/GS

3D Max 2023

Mental Ray/Corona

Trimble Catalyst (GNSS)

iLiDAR/TerrainData

Georeferenced/Surveyed DW/GS

3D Max 2023

Mental Ray/Corona

Trimble Catalyst (GNSS)

iLiDAR/TerrainData

Georeferenced/Surveyed DW/GS

3D Max 2023

Mental Ray/Corona

Trimble Catalyst (GNSS)

iLiDAR/TerrainData

Georeferenced/Surveyed DW/GS

3D Max 2023

Mental Ray/Corona

Trimble Catalyst (GNSS)

iLiDAR/TerrainData

Georeferenced/Surveyed DW/GS

3D Max 2023

Mental Ray/Corona

Trimble Catalyst (GNSS)

iLiDAR/TerrainData

Georeferenced/Surveyed DW/GS

3D Max 2023

Mental Ray/Corona

Trimble Catalyst (GNSS)

iLiDAR/TerrainData

Georeferenced/Surveyed DW/GS

3D Max 2023

Mental Ray/Corona

Trimble Catalyst (GNSS)

iLiDAR/TerrainData

Georeferenced/Surveyed DW/GS

3D Max 2023

Mental Ray/Corona

Trimble Catalyst (GNSS)

iLiDAR/TerrainData

Georeferenced/Surveyed DW/GS

3D Max 2023

Mental Ray/Corona

Trimble Catalyst (GNSS)

iLiDAR/TerrainData

Georeferenced/Surveyed DW/GS

3D Max 2023

Mental Ray/Corona

Trimble Catalyst (GNSS)

iLiDAR/TerrainData

Georeferenced/Surveyed DW/GS

3D Max 2023

Mental Ray/Corona

Trimble Catalyst (GNSS)

iLiDAR/TerrainData

Georeferenced/Surveyed DW/GS

3D Max 2023

Mental Ray/Corona

Trimble Catalyst (GNSS)

iLiDAR/TerrainData

Georeferenced/Surveyed DW/GS

3D Max 2023

Mental Ray/Corona

Trimble Catalyst (GNSS)

iLiDAR/TerrainData

Georeferenced/Surveyed DW/GS

3D Max 2023

Mental Ray/Corona

Trimble Catalyst (GNSS)

iLiDAR/TerrainData

Georeferenced/Surveyed DW/GS

3D Max 2023

Mental Ray/Corona

Trimble Catalyst (GNSS)

iLiDAR/TerrainData

Georeferenced/Surveyed DW/GS

3D Max 2023

Mental Ray/Corona

Trimble Catalyst (GNSS)

iLiDAR/TerrainData

Georeferenced/Surveyed DW/GS

3D Max 2023

Mental Ray/Corona

Trimble Catalyst (GNSS)

iLiDAR/TerrainData

Georeferenced/Surveyed DW/GS

3D Max 2023

Mental Ray/Corona

Trimble Catalyst (GNSS)

iLiDAR/TerrainData

Georeferenced/Surveyed DW/GS

3D Max 2023

Mental Ray/Corona

Trimble Catalyst (GNSS)

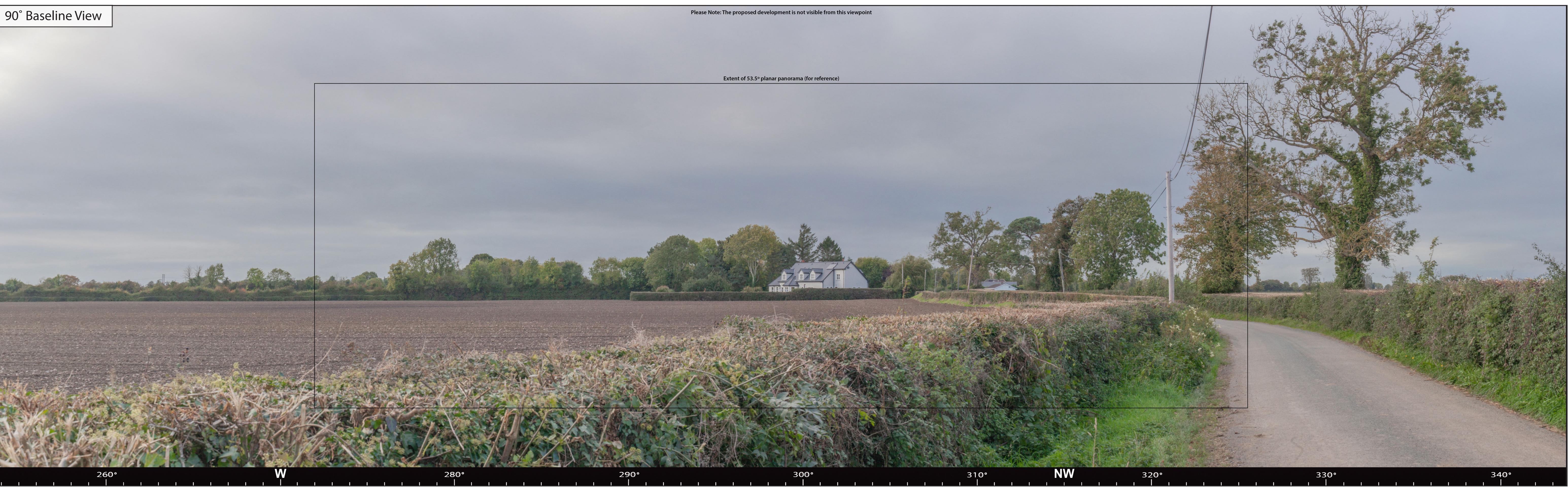
iLiDAR/TerrainData

Georeferenced/Surveyed DW/GS

3D Max 2023

Mental Ray/Corona

Trimble Catalyst (GNSS)


iLiDAR/TerrainData

Georeferenced/Surveyed DW/GS

3D Max 2023

90° Baseline View

Please Note: The proposed development is not visible from this viewpoint

Walterstown 110kV Substation - Landscape and Visual Impact Assessment

Viewpoint Ref: VP4 L2220 at Jarretstown

Visualisation Type 4 - This 90° cylindrical projection panorama has been captured, prepared and presented in accordance with the guidance set out in the Landscape Institute Technical Guidance Note 06/19 for Type 4 Visualisations and the Scottish Natural Heritage 2017 guidance 'Visual Representation of Wind Farms'. This image has been presented in a 90° cylindrical format to aid visual comprehension of linear infrastructure occupying a wide FoV, which avoids splitting the view across numerous multiple images.

Easting (ITM): 701042
Northing (ITM): 738879
Principal Distance: 522 mm

Horizontal Field of View: 90° (cylindrical projection)
Direction of View: 299°
Paper size: 841 x 297 mm
Distance to Site: 0.7 km
Correct printed image size: 820 x 251 mm

Elevation: 65.93 m
Panoramic Head: Manfrotto Pano Head/Leveller
Enlargement Factor: 96%

Date and Time: 24/03/1900 15:42:00
Camera: Canon 5D Mark II Digital SLR
Lens: Canon Fixed 50mm Full Frame Sensor

Photography Software: Adobe Lightroom
Panorama Stitching Software: PTGui Pro
Post-Production Software: Adobe Photoshop
Panoramic Head: Manfrotto Pano Head/Leveller
Enlargement Factor: 96%

Formatting Software: Adobe Illustrator/InDesign
Topographical Data: LiDAR/Terrain Data
Camera Height: 1.7m (AGL)

Modeling Software: 3D Max 2023
Rendering Software: Mental Ray/Corona
GNSS Unit: Trimble Catalyst (GNSS)
Topographical Data: LiDAR/Terrain Data
GPS Ref: Georeferenced/Surveyed DW/GS

90° Outline View
indicating physical position and scale of the
proposed development irrespective of screening

Walterstown 110kV Substation - Landscape and Visual Impact Assessment

Viewpoint Ref: VP4 L2220 at Jarretstown

Visualisation Type 4 - This 90° cylindrical projection panorama has been captured, prepared and presented in accordance with the guidance set out in the Landscape Institute Technical Guidance Note 06/19 for Type 4 Visualisations and the Scottish Natural Heritage 2017 guidance 'Visual Representation of Wind Farms'. This image has been presented in a 90° cylindrical format to aid visual comprehension of linear infrastructure occupying a wide FoV, which avoids splitting the view across numerous multiple images.

Easting (ITM): 701042 Horizontal Field of View: 90° (cylindrical projection)
Northing (ITM): 738879 Principal Distance: 522 mm
Direction of View: 299° Paper size: 841 x 297 mm
Distance to Site: 0.7 km Correct printed image size: 820 x 251 mm
Elevation: 65.93 m Enlargement Factor: 96%
Date and Time: 2025:10:01 15:42
Camera: Canon 5D Mark II Digital SLR
Lens: Canon Fixed 50mm Full Frame Sensor
Panoramic Head: Manfrotto Pano Head/Leveller
Camera Height: 1.7m (AGL)

Photography Software: Adobe Lightroom
Panorama Stitching Software: PTGui Pro
Post-Production Software: Adobe Photoshop
Formatting Software: Adobe Illustrator/InDesign

Modeling Software: 3DS Max 2023
Rendering Software: Mental Ray/Corona
GIS Unit: Trimble Catalyst (GNSS)
Topographical Data: LiDAR/Terrain Data
GPS Ref: Georeferenced/Surveyed DW/GS

90° Baseline View

Walterstown 110kV Substation - Landscape and Visual Impact Assessment

Viewpoint Ref: VP5 L2220 near Cullaghreeva

Visualisation Type 4 - This 90° cylindrical projection panorama has been captured, prepared and presented in accordance with the guidance set out in the Landscape Institute Technical Guidance Note 06/19 for Type 4 Visualisations and the Scottish Natural Heritage 2017 guidance 'Visual Representation of Wind Farms'. This image has been presented in a 90° cylindrical format to aid visual comprehension of linear infrastructure occupying a wide FoV, which avoids splitting the view across numerous multiple images.

Easting (ITM):

701614

Northing (ITM):

738817

Horizontal Field of View: 90° (cylindrical projection)

522 mm

Principal Distance:

841 x 297 mm

Direction of View:

289 °

Paper size:

820 x 251 mm

Distance to Site:

1.3 km

Correct printed image size:

96%

Elevation:

68.22 m

Enlargement Factor:

1.7m (AGL)

Date and Time:

24/03/1900 11:21:00

Photography Software:

Adobe Lightroom

Panorama Stitching Software:

PTGui Pro

Post-Production Software:

Adobe Photoshop

Panoramic Head:

Manfrotto Pano Head/Leveller

Formatting Software:

Adobe Illustrator/InDesign

Modeling Software:

3D Max 2013

Rendering Software:

Mele Ray/Corona

GSIS Unit:

Trimble Catalyst (GNSS)

Toponographical Data:

iLiDAR/TerrainData

GPS Ref:

Georeferenced Survey DW/GS

3D Max 2013

Mele Ray/Corona

Trimble Catalyst (GNSS)

iLiDAR/TerrainData

Georeferenced Survey DW/GS

3D Max 2013

Mele Ray/Corona

Trimble Catalyst (GNSS)

iLiDAR/TerrainData

Georeferenced Survey DW/GS

3D Max 2013

Mele Ray/Corona

Trimble Catalyst (GNSS)

iLiDAR/TerrainData

Georeferenced Survey DW/GS

3D Max 2013

Mele Ray/Corona

Trimble Catalyst (GNSS)

iLiDAR/TerrainData

Georeferenced Survey DW/GS

3D Max 2013

Mele Ray/Corona

Trimble Catalyst (GNSS)

iLiDAR/TerrainData

Georeferenced Survey DW/GS

3D Max 2013

Mele Ray/Corona

Trimble Catalyst (GNSS)

iLiDAR/TerrainData

Georeferenced Survey DW/GS

3D Max 2013

Mele Ray/Corona

Trimble Catalyst (GNSS)

iLiDAR/TerrainData

Georeferenced Survey DW/GS

3D Max 2013

Mele Ray/Corona

Trimble Catalyst (GNSS)

iLiDAR/TerrainData

Georeferenced Survey DW/GS

3D Max 2013

Mele Ray/Corona

Trimble Catalyst (GNSS)

iLiDAR/TerrainData

Georeferenced Survey DW/GS

3D Max 2013

Mele Ray/Corona

Trimble Catalyst (GNSS)

iLiDAR/TerrainData

Georeferenced Survey DW/GS

3D Max 2013

Mele Ray/Corona

Trimble Catalyst (GNSS)

iLiDAR/TerrainData

Georeferenced Survey DW/GS

3D Max 2013

Mele Ray/Corona

Trimble Catalyst (GNSS)

iLiDAR/TerrainData

Georeferenced Survey DW/GS

3D Max 2013

Mele Ray/Corona

Trimble Catalyst (GNSS)

iLiDAR/TerrainData

Georeferenced Survey DW/GS

3D Max 2013

Mele Ray/Corona

Trimble Catalyst (GNSS)

iLiDAR/TerrainData

Georeferenced Survey DW/GS

3D Max 2013

Mele Ray/Corona

Trimble Catalyst (GNSS)

iLiDAR/TerrainData

Georeferenced Survey DW/GS

3D Max 2013

Mele Ray/Corona

Trimble Catalyst (GNSS)

iLiDAR/TerrainData

Georeferenced Survey DW/GS

3D Max 2013

Mele Ray/Corona

Trimble Catalyst (GNSS)

iLiDAR/TerrainData

Georeferenced Survey DW/GS

3D Max 2013

Mele Ray/Corona

Trimble Catalyst (GNSS)

iLiDAR/TerrainData

Georeferenced Survey DW/GS

3D Max 2013

Mele Ray/Corona

Trimble Catalyst (GNSS)

iLiDAR/TerrainData

Georeferenced Survey DW/GS

3D Max 2013

Mele Ray/Corona

Trimble Catalyst (GNSS)

iLiDAR/TerrainData

Georeferenced Survey DW/GS

3D Max 2013

Mele Ray/Corona

Trimble Catalyst (GNSS)

iLiDAR/TerrainData

Georeferenced Survey DW/GS

3D Max 2013

Mele Ray/Corona

Trimble Catalyst (GNSS)

iLiDAR/TerrainData

Georeferenced Survey DW/GS

3D Max 2013

Mele Ray/Corona

Trimble Catalyst (GNSS)

iLiDAR/TerrainData

Georeferenced Survey DW/GS

3D Max 2013

Mele Ray/Corona

Trimble Catalyst (GNSS)

iLiDAR/TerrainData

Georeferenced Survey DW/GS

3D Max 2013

Mele Ray/Corona

Trimble Catalyst (GNSS)

iLiDAR/TerrainData

Georeferenced Survey DW/GS

3D Max 2013

Mele Ray/Corona

Trimble Catalyst (GNSS)

iLiDAR/TerrainData

Georeferenced Survey DW/GS

3D Max 2013

Mele Ray/Corona

Trimble Catalyst (GNSS)

iLiDAR/TerrainData

Georeferenced Survey DW/GS

3D Max 2013

Mele Ray/Corona

Trimble Catalyst (GNSS)

iLiDAR/TerrainData

90° Outline View
indicating physical position and scale of the
proposed development irrespective of screening

Walterstown 110kV Substation - Landscape and Visual Impact Assessment

Viewpoint Ref: VP5 L2220 near Cullaghreeva

Visualisation Type 4 - This 90° cylindrical projection panorama has been captured, prepared and presented in accordance with the guidance set out in the Landscape Institute Technical Guidance Note 06/19 for Type 4 Visualisations and the Scottish Natural Heritage 2017 guidance 'Visual Representation of Wind Farms'. This image has been presented in a 90° cylindrical format to aid visual comprehension of linear infrastructure occupying a wide FoV, which avoids splitting the view across numerous multiple images.

Easting (ITM): 701614
Northing (ITM): 738817
Horizontal Field of View: 90° (cylindrical projection)
Principal Distance: 522 mm
Direction of View: 289 °
Paper size: 841 x 297 mm
Distance to Site: 1.3 km
Correct printed image size: 820 x 251 mm
Elevation: 68.22 m
Enlargement Factor: 96%

Date and Time: 2025:09:17 11:21
Camera: Canon 5D Mark II Digital SLR
Lens: Canon Fixed 50mm Full Frame Sensor
Panoramic Head: Manfrotto Pano Head/Leveller
Camera Height: 1.7m (AGL)

Photography Software: Adobe Lightroom
Panorama Stitching Software: PTGui Pro
Post-Production Software: Adobe Photoshop
Formatting Software: Adobe Illustrator/InDesign

Modeling Software: 3D Max 2023
Rendering Software: Mental Ray/Corona
GNSS Unit: Trimble Catalyst (GNSS)
Topographical Data: LiDAR/Terrain Data
GPS Ref: Georeferenced Survey DW/GS

90° Baseline View

Walterstown 110kV Substation - Landscape and Visual Impact Assessment

Viewpoint Ref: VP6 L2218 at Moor of Meath

Visualisation Type 4 - This 90° cylindrical projection panorama has been captured, prepared and presented in accordance with the guidance set out in the Landscape Institute Technical Guidance Note 06/19 for Type 4 Visualisations and the Scottish Natural Heritage 2017 guidance 'Visual Representation of Wind Farms'. This image has been presented in a 90° cylindrical format to aid visual comprehension of linear infrastructure occupying a wide FoV, which avoids splitting the view across numerous multiple images.

Easting (ITM): 700163 Horizontal Field of View: 90° (cylindrical projection)
Northing (ITM): 738648 Principal Distance: 522 mm
Direction of View: 9° Paper size: 841 x 297 mm
Distance to Site: 0.5 km Correct printed image size: 820 x 251 mm
Elevation: 65.27 m Enlargement Factor: 96%

Date and Time: 24/03/1900 11:37:00 Photography Software: Adobe Lightroom
Camera: Canon 5D Mark II Digital SLR Panorama Stitching Software: PTGui Pro
Lens: Canon Fixed 50mm Full Frame Sensor Post-Production Software: Adobe Photoshop
Panoramic Head: Manfrotto Pano Head/Leveller Formatting Software: Adobe Illustrator/InDesign

Modeling Software: 3D Max 2023
Rendering Software: Mental Ray/Corona
GIS Unit: Trimble Catalyst (GNSS)
Topographical Data: LiDAR/Terrainin5ata
GPS Ref: Georeferenced/Surveyed DWG/S

90° Outline View

indicating physical position and scale of the proposed development irrespective of screening

/alterstown 110kV Substation - Landscape and Visual Impact Assessment

Viewpoint Ref: VP6 L2218 at Moor of Meath

Visualisation Type 4 - This 90° cylindrical projection panorama has been captured, prepared and presented in accordance with the guidance set out in the Landscape Institute Technical Guidance Note 06/19 for Type 4 Visualisations and the Scottish Natural Heritage 2017 guidance 'Visual Representation of Wind Farms'. This image has been presented in a 90° cylindrical format to aid visual comprehension of linear infrastructure occupying a wide FoV, which avoids splitting the view across numerous multiple images.

0):	700163	Horizontal Field of View: 90° (cylindrical projection)	Date and Time:
M):	738648	Principal Distance: 522 mm	Camera:
iew:	9 °	Paper size: 841 x 297 mm	Lens: Canon
ite:	0.5 km	Correct printed image size: 820 x 251 mm	Panoramic Head:
	65.27 m	Enlargement Factor: 96%	Camera Height:

2025:09:17 11:37
Canon 5D Mark II Digital SLR
24-70mm Full Frame Sensor
Manfrotto Pano Head/Leveller
1.7m (AGL)

lony Software: Adobe Lightr
Stitching Software: PTGU
ction Software: Adobe Photos
Software: Adobe Illustrator/InDe

Modelling Software:
Rendering Software:
GNSS Unit:
Topographical Data:
GPS Ref:

3DS Max 2023
Mental Ray/Corona
Trimble Catalyst (GNSS)
LiDAR/OSI Terrain Data
Referenced/Surveyed DWGS

90° Baseline View

Please Note: The proposed development is not visible from this viewpoint

Walterstown 110kV Substation - Landscape and Visual Impact Assessment

Viewpoint Ref: VP7 L1015 at Confey

Visualisation Type 4 - This 90° cylindrical projection panorama has been captured, prepared and presented in accordance with the guidance set out in the Landscape Institute Technical Guidance Note 06/19 for Type 4 Visualisations and the Scottish Natural Heritage 2017 guidance 'Visual Representation of Wind Farms'. This image has been presented in a 90° cylindrical format to aid visual comprehension of linear infrastructure occupying a wide FoV, which avoids splitting the view across numerous multiple images.

Easting (ITM):

699793

Northing (ITM):

737761

Horizontal Field of View: 90° (cylindrical projection)

522 mm

Principal Distance:

841 x 297 mm

Direction of View:

18°

Paper size:

820 x 251 mm

Distance to Site:

1.5 km

Correct printed image size:

96%

Elevation:

66.87 m

Enlargement Factor:

1.7m (AGL)

Date and Time:

24/03/1900 11:45:00

Photography Software:

Adobe Lightroom

Camera:

Canon 5D Mark II Digital SLR

Panorama Stitching Software:

PTGui Pro

Lens:

Canon Fixed 50mm Full Frame Sensor

Post-Production Software:

Adobe Photoshop

Panoramic Head:

Manfrotto Pano Head/Leveller

Formatting Software:

Adobe Illustrator/InDesign

Topographical Data:

iLiDA/Ordnance Survey Digital Terrain Model

GPS Ref:

Georeferenced Survey DWG

3D Model:

Max 02

Rendering Software:

Mele Ray/Corona

GS Unit:

Trimble Catalyst (GNSS)

Toponographical Data:

iLiDA/Ordnance Survey Digital Terrain Model

GPS Ref:

Georeferenced Survey DWG

3D Model:

Max 02

Rendering Software:

Mele Ray/Corona

GS Unit:

Trimble Catalyst (GNSS)

Toponographical Data:

iLiDA/Ordnance Survey Digital Terrain Model

GPS Ref:

Georeferenced Survey DWG

3D Model:

Max 02

Rendering Software:

Mele Ray/Corona

GS Unit:

Trimble Catalyst (GNSS)

Toponographical Data:

iLiDA/Ordnance Survey Digital Terrain Model

GPS Ref:

Georeferenced Survey DWG

3D Model:

Max 02

Rendering Software:

Mele Ray/Corona

GS Unit:

Trimble Catalyst (GNSS)

Toponographical Data:

iLiDA/Ordnance Survey Digital Terrain Model

GPS Ref:

Georeferenced Survey DWG

3D Model:

Max 02

Rendering Software:

Mele Ray/Corona

GS Unit:

Trimble Catalyst (GNSS)

Toponographical Data:

iLiDA/Ordnance Survey Digital Terrain Model

GPS Ref:

Georeferenced Survey DWG

3D Model:

Max 02

Rendering Software:

Mele Ray/Corona

GS Unit:

Trimble Catalyst (GNSS)

Toponographical Data:

iLiDA/Ordnance Survey Digital Terrain Model

GPS Ref:

Georeferenced Survey DWG

3D Model:

Max 02

Rendering Software:

Mele Ray/Corona

GS Unit:

Trimble Catalyst (GNSS)

Toponographical Data:

iLiDA/Ordnance Survey Digital Terrain Model

GPS Ref:

Georeferenced Survey DWG

3D Model:

Max 02

Rendering Software:

Mele Ray/Corona

GS Unit:

Trimble Catalyst (GNSS)

Toponographical Data:

iLiDA/Ordnance Survey Digital Terrain Model

GPS Ref:

Georeferenced Survey DWG

3D Model:

Max 02

Rendering Software:

Mele Ray/Corona

GS Unit:

Trimble Catalyst (GNSS)

Toponographical Data:

iLiDA/Ordnance Survey Digital Terrain Model

GPS Ref:

Georeferenced Survey DWG

3D Model:

Max 02

Rendering Software:

Mele Ray/Corona

GS Unit:

Trimble Catalyst (GNSS)

Toponographical Data:

iLiDA/Ordnance Survey Digital Terrain Model

GPS Ref:

Georeferenced Survey DWG

3D Model:

Max 02

Rendering Software:

Mele Ray/Corona

GS Unit:

Trimble Catalyst (GNSS)

Toponographical Data:

iLiDA/Ordnance Survey Digital Terrain Model

GPS Ref:

Georeferenced Survey DWG

3D Model:

Max 02

Rendering Software:

Mele Ray/Corona

GS Unit:

Trimble Catalyst (GNSS)

Toponographical Data:

iLiDA/Ordnance Survey Digital Terrain Model

GPS Ref:

Georeferenced Survey DWG

3D Model:

Max 02

Rendering Software:

Mele Ray/Corona

GS Unit:

Trimble Catalyst (GNSS)

Toponographical Data:

iLiDA/Ordnance Survey Digital Terrain Model

GPS Ref:

Georeferenced Survey DWG

3D Model:

Max 02

Rendering Software:

Mele Ray/Corona

GS Unit:

Trimble Catalyst (GNSS)

Toponographical Data:

iLiDA/Ordnance Survey Digital Terrain Model

GPS Ref:

Georeferenced Survey DWG

3D Model:

Max 02

Rendering Software:

Mele Ray/Corona

GS Unit:

Trimble Catalyst (GNSS)

Toponographical Data:

iLiDA/Ordnance Survey Digital Terrain Model

GPS Ref:

Georeferenced Survey DWG

3D Model:

Max 02

90° Outline View
indicating physical position and scale of the
proposed development irrespective of screening

Walterstown 110kV Substation - Landscape and Visual Impact Assessment

Viewpoint Ref: VP7 L1015 at Confey

Visualisation Type 4 - This 90° cylindrical projection panorama has been captured, prepared and presented in accordance with the guidance set out in the Landscape Institute Technical Guidance Note 06/19 for Type 4 Visualisations and the Scottish Natural Heritage 2017 guidance 'Visual Representation of Wind Farms'. This image has been presented in a 90° cylindrical format to aid visual comprehension of linear infrastructure occupying a wide FoV, which avoids splitting the view across numerous multiple images.

Easting (ITM): 699793
Northing (ITM): 737761
Principal Distance: 522 mm

Horizontal Field of View: 90° (cylindrical projection)
Direction of View: 18°
Paper size: 841 x 297 mm

Date and Time: 2025/09/17 11:45
Camera: Canon 5D Mark II Digital SLR
Lens: Canon Fixed 50mm Full Frame Sensor

Photography Software: Adobe Lightroom
Panorama Stitching Software: PTGui Pro
Post-Production Software: Adobe Photoshop

Modeling Software: 3D Max 2023
Rendering Software: Mental Ray/Corona
GNS Unit: Trimble Catalyst (GNSS)
Topographical Data: LiDAR/Terrain Data

Formatting Software: Adobe Illustrator/InDesign
Georeferencing Software: Georeferenced Survey DWG/S

Walterstown 110kV Substation - Landscape and Visual Impact Assessment

Viewpoint Ref: VP8 L2218 at Walterstown

Visualisation Type 4 - This 90° cylindrical projection panorama has been captured, prepared and presented in accordance with the guidance set out in the Landscape Institute Technical Guidance Note 06/19 for Type 4 Visualisations and the Scottish Natural Heritage 2017 guidance 'Visual Representation of Wind Farms'. This image has been presented in a 90° cylindrical format to aid visual comprehension of linear infrastructure occupying a wide FoV, which avoids splitting the view across numerous multiple images.

Easting (ITM):

700084

Northing (ITM):

738926

Principal Distance:

522 mm

Direction of View:

26°

Paper size:

841 x 297 mm

Distance to Site:

0.3 km

Correct printed image size:

820 x 251 mm

Elevation:

67.02 m

Horizontal Field of View: 90° (cylindrical projection)

Date and Time:

24/03/1900 15:00:00

Photography Software:

Adobe Lightroom

Panorama Stitching Software:

PTGui Pro

Post-Production Software:

Adobe Photoshop

Formatting Software:

Adobe Illustrator/InDesign

Camera:

Canon 5D Mark II Digital SLR

Lens:

Canon Fixed 50mm Full Frame Sensor

Panoramic Head:

Manfrotto Pano Head/Leveller

Camera Height:

1.7m (AGL)

Date and Time:

24/03/1900 15:00:00

Photography Software:

Adobe Lightroom

Panorama Stitching Software:

PTGui Pro

Post-Production Software:

Adobe Photoshop

Formatting Software:

Adobe Illustrator/InDesign

Modeling Software:

3D Max 2023

Metabuilder

Blender

Unreal Engine

Maya

3D Studio Max

3D Studio Max 2023

Rendering Software:

Blender

Arnold

Octane

Redshift

Octane Render

Arnold

Octane Render

GS Unit:

GNSS

Trimble Catalyst

Trimble R1

Trimble R10

Trimble R10 GNSS

Trimble R10 GNSS

Trimble R10 GNSS

Topographical Data:

iLiDAR

Terrain Data

LiDAR

Terrain Data

LiDAR

Terrain Data

LiDAR

GS Ref:

Georeferenced

Surveyed DWG

Georeferenced

Surveyed DWG

Georeferenced

Surveyed DWG

Georeferenced

Georeferenced DWG

Georeferenced

Surveyed DWG

Georeferenced

Surveyed DWG

Georeferenced

Surveyed DWG

Georeferenced DWG

Georeferenced

Surveyed DWG

Georeferenced

Surveyed DWG

Georeferenced

Surveyed DWG

Georeferenced DWG

Georeferenced

Surveyed DWG

Georeferenced

90° Outline View
indicating physical position and scale of the proposed development irrespective of screening

Walterstown 110kV Substation - Landscape and Visual Impact Assessment

Viewpoint Ref: VP8 L2218 at Walterstown

Visualisation Type 4 - This 90° cylindrical projection panorama has been captured, prepared and presented in accordance with the guidance set out in the Landscape Institute Technical Guidance Note 06/19 for Type 4 Visualisations and the Scottish Natural Heritage 2017 guidance 'Visual Representation of Wind Farms'. This image has been presented in a 90° cylindrical format to aid visual comprehension of linear infrastructure occupying a wide FoV, which avoids splitting the view across numerous multiple images.

Easting (ITM): 700084 Horizontal Field of View: 90° (cylindrical projection)
Northing (ITM): 738926 Principal Distance: 522 mm
Direction of View: 26° Paper size: 841 x 297 mm
Distance to Site: 0.3 km Correct printed image size: 820 x 251 mm
Elevation: 67.02 m Enlargement Factor: 96%
Date and Time: 2025:10:01 15:00
Camera: Canon 5D Mark II Digital SLR
Lens: Canon Fixed 50mm Full Frame Sensor
Panoramic Head: Manfrotto Pano Head/Leveller
Camera Height: 1.7m (AGL)

Photography Software: Adobe Lightroom
Panorama Stitching Software: PTGui Pro
Post-Production Software: Adobe Photoshop
Formatting Software: Adobe Illustrator/InDesign

Modeling Software: 3DS Max 2023
Rendering Software: Mental Ray/Corona
GIS Unit: Trimble Catalyst (GNSS)
Topographical Data: LiDAR/Terrain Data
GPS Ref: Georeferenced/Surveyed DW/GS

90° Photomontage

Walterstown 110kV Substation - Landscape and Visual Impact Assessment

Viewpoint Ref: VP8 L2218 at Walterstown

Visualisation Type 4 - This 90° cylindrical projection panorama has been captured, prepared and presented in accordance with the guidance set out in the Landscape Institute Technical Guidance Note 06/19 for Type 4 Visualisations and the Scottish Natural Heritage 2017 guidance 'Visual Representation of Wind Farms'. This image has been presented in a 90° cylindrical format to aid visual comprehension of linear infrastructure occupying a wide FoV, which avoids splitting the view across numerous multiple images.

N

20°

30°

40°

50°

60°

70°

NE

10°

20°

30°

40°

50°

60°

70°

NE

30°

40°

50°

60°

70°

NE

10°

20°

NE

90° Photomontage
Established Mitigation

Walterstown 110kV Substation - Landscape and Visual Impact Assessment

Viewpoint Ref: VP8 L2218 at Walterstown

Visualisation Type 4 - This 90° cylindrical projection panorama has been captured, prepared and presented in accordance with the guidance set out in the Landscape Institute Technical Guidance Note 06/19 for Type 4 Visualisations and the Scottish Natural Heritage 2017 guidance 'Visual Representation of Wind Farms'. This image has been presented in a 90° cylindrical format to aid visual comprehension of linear infrastructure occupying a wide FoV, which avoids splitting the view across numerous multiple images.

Easting (ITM): 700084 Horizontal Field of View: 90° (cylindrical projection)
Northing (ITM): 738926 Principal Distance: 522 mm
Direction of View: 26° Paper size: 841 x 297 mm
Distance to Site: 0.3 km Correct printed image size: 820 x 251 mm
Elevation: 67.02 m Enlargement Factor: 96%
Date and Time: 2025:10:01 15:00
Camera: Canon 5D Mark II Digital SLR
Lens: Canon Fixed 50mm Full Frame Sensor
Panoramic Head: Manfrotto Pano Head/Leveller
Camera Height: 1.7m (AGL)

Photography Software: Adobe Lightroom
Panorama Stitching Software: PTGui Pro
Post-Production Software: Adobe Photoshop
Formatting Software: Adobe Illustrator/InDesign

Modeling Software: 3D Max 2023
Rendering Software: Mental Ray/Corona
GIS Unit: Trimble Catalyst (GNSS)
Topographical Data: LiDAR/Terrain Data
GPS Ref: Georeferenced/Surveyed DW/GS

Walterstown 110 kV Substation

PECR Appendix 12.2 - Landscape and
Ecological Mitigation Plan

December 2025

macroworks APEM GOLD

Registered Landscape Architect

Legend:

- Proposed thicket
- Field margins/ grass seeding
- Existing hedgerows
- Existing trees

Notes:

It is imperative to use native Irish species in so far as possible as they are adapted to Irish conditions and therefore more likely to thrive compared to imported species. Selected species should also represent woodland and hedgerows in the surrounding environs although non-native species are not to be used, unless otherwise agreed with the Planning Authority.

All plants supplied shall be exactly true to name as shown in the plant schedules. Varieties with variegated and/or coloured leaves will not be accepted, and any plant found to be of this type upon leafing-out shall be replaced by the contractor. Bundles of plants shall be marked in conformity with BS3936: Part 1: 1965 and BS3936: part 4, 1966. The nursery supplier shall replace any plants which, on leafing out, are found not to conform to the labels.

Proposed Landscape Figures:
Proposed native thicket : 620m length, 2515.5 sqm.
Species-rich grassland : 13237 sqm.

Prepared by:
MACRO WORKS,
HIBERNA HOUSE,
CHERRYWOOD BUSINESS PARK,
LOUGHINSTOWN, DUBLIN 18
00353 (01) 2303585
info@macroworks.ie

Prepared for:
ESB
27 Fitzwilliam Street
Lower, Dublin 2, D02
KT92, Ireland

Site location:
COUNTY MEATH

Drawing Title:
LANDSCAPE MITIGATION PLAN

Project:
WALTERSTOWN 110KV SUBSTATION

Drawn by: MMCK **Checked by:** RB

Drawing Ref: LD_WLTSTWN_LMP_1.0

Scale: 1:750 @ A1 **Date:** NOVEMBER 2025

PLANNING